A CMOS-Compatible Fabrication Process for Scaled Self-Aligned InGaAs MOSFETs

Jianqiang Lin Dimitri Antoniadis and Jesús del Alamo

Microsystems Technology Laboratories, MIT

CS MANTECH, May 18-21, 2015

Acknowledgements: DTRA NSF E3S STC MIT SMART program

Motivation for III-V CMOS

• Superior electron transport properties for III-Vs

- III-V's: promising to extend Moore's Law
- Focus of this talk: InGaAs MOSFET fabrication technology

Self-aligned recessed-gate QW-MOSFET

HEMTs

[Kim IEDM 2011]

Considerations for III-V MOSFETs

- Gate insulator
 - thin with low leakage, low D_{it}
- High-level self-alignment
 - ohmic metal, access region, gate
- CMOS compatibility
 - free of wet-etch, lift-off and Au

Process overview

Details of contact and III-V recess processes

W barrier for undercut immunity

Goal: to reduce device footprint and gate pitch size

[Lin, IEDM 2012]

[Lin, IEDM 2013]

Problems with wet etch gate recess

- Isotropic wet etch \rightarrow large lateral extent
 - Large footprint
 - Ungated and uncapped access regions → access resistance ↑

New III-V recess technology: Precise channel thickness (t_c) control

Cl₂ anisotropic RIE

Anisotropic

III-V dry etch: surface roughness Selected chemistry Cl₂:N₂

Key parameters:

- Bias
- Pressure
- Gas ratio (Cl₂:N₂)
- Gas chemistry

Not selected recipes

As-grown

Selected recipe

Virgin RMS: 0.17 nm

Cl₂:N₂=10:3 RMS: 0.29 nm

High bias RMS: 0.59 nm

High pressure RMS: 0.53 nm

Cl₂:N₂=1:1 RMS: 0.42 nm

[Zhao EDL 2014]

⁹

III-V dry etch: trenching

BCl₃-chemistry

[Zhao IEDM 2014]

 $Cl_2:N_2$ -chemistry

New III-V recess technology: Precise channel thickness (t_c) control

Cl₂ anisotropic RIE

- Anisotropic
- Accurate depth control

[Lin, EDL 2014]

New III-V recess technology: Precise channel thickness (t_c) control

Cl₂ anisotropic RIE

[Lin, EDL 2014]

- Anisotropic
- Accurate depth control
- Accurate and fast calibration

Precise channel thickness (t_c) control

1 nm depth control

Device scaling study

- ON-state: I_{ON}, g_m, R_{SD}
 OFF-state: S, DIBL, V_t roll-off
- [Lin, TED submitted]

Typical long-channel characteristics

- Steep S at low $V_{ds} \rightarrow Low D_{it}$
- $J_g < 10^{-2} \text{ A/cm}^2$ at EOT~0.5 nm \rightarrow gate leakage suppression (typical HEMT: $J_g > 100 \text{ A/cm}^2$) 14

Scalability and performance

Scalability

SiO₂ W Mo n⁺ cap Mo HfO₂ channel

Conclusions

- Scalable self-aligned InGaAs MOSFETs

 CMOS manufacturability, performance, scalability
- Bilayer ohmic contact for footprint scaling
- III-V recess
 - III-V dry etch: smooth surface and no trenching
 - Digital etch: accurate depth control
- InGaAs MOSFET performance analysis
 - Steep subthreshold swing: low D_{it}
 - Gate leakage suppression
 - Record transconductance achieved
 - Working L_g =20 nm InGaAs MOSFETs